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1. INTRODUCTION

The information presented in this document is a continuation of the work
described in Reference 2. This document presents the predictions made by IRT for

IEMP problem & whereas the earlier report presented results for problems 2 and 3. Both
reports are part of the internal SGEMP IEMP code validation program being conducted
by Harry Diamond laboratories for the Defense Nuclear Agency.

The primary purpose of the code validation program is to test the ability of
existing SGEMP codes to successfully account for air pressure effects on the internal
system generated electromagnetic pulse. The presence of even small amounts of air
inside a system cavity can cause significant variations in IEMP waveforms. The
conclusions drawn from earlier work in this area (Ref 1) focus on the inability of
existing codes to treat air ionization effects at pressures in the hundreds of mtorr
range, the regime of avalanche ionization for the pulse parameters described in this
report.

The predictions were made using the DYNACYL computer code (Ref 2).
DYNACYL is a fully dynamic, finite difference, time domain approach to solving
Maxwell's equations incorporates self-consistent particle tracking. IEMP problem & is
simifar in geometry to problems 2 and 3. However, an attempt has been made to more

accurately characterize the incident electron pulse characteristics.




2. DESCRIPTION OF THE PROBLEM

IEMP problem & considers the injection of a pulsed electron beam through a Mylar
plus wire mesh membrane into one end of a circular cylinder. The average measured
beam current and measured beam energy are shown as functions of time in Figure I.
The pulse has a total duration of 22.5 ns with an approximate zero-to-peak rise time of
6.4 ns. Maximum average energy of the beam is 200 KeV. The cylinder used in the
problem was constructed from a conducting material, with a length of 55cm, and a
radius of 15.4 cm as shown in Figure 2. One end of the cylinder was left open. The
Mylar wire mesh screen with attached cylinder was used to construct an enclosed
chamber where only small quantities of air were allowed to remain. The air pressure
inside the chamber was the controlled variable in the experiment and was fixed at four
values, either 0.002, 0.1, 0.3 or 50 torr.

The computational requirements for the problem were to determine values of
current, and values for the electric and magnetic field intensity as a function of time
and pressure at several locations inside the cylinder.
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Figure 1. Average measured beam current and measured beam energy
as functions of time
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Figure 2. Details of the cylinder geometry




3. DESCRIPTION OF CODE

DYNACYL solves two dimensional, time dependent IEMP problems for a circular
cylinder when one end emits electrons to the interior in an axisymmetric distribution.
The electrons are modeled by quasi-particles, where each 5. rticle may represent a
large number of electrons. The particles are injected into th: spatial grid at various
energies, angles, and charges depending on the description of the incident pulse inputed
to the program. The particles of charge have their motions computed via Newtonian
equations of motion and are responsible for ionization of air molecules present in the
cylinder. The motion of these secondary electrons is described by an empirical drift
velocity and the rate of ionization by these secondary electrons is also described
empirically. The total charge motion information is converted into a current density
expression via the continuity equation which in turn is used as a source term in

generating the solution to Maxwell's equations.




4. DESCRIPTION OF CODE INPUT

DYNACYL requires a description of the pulse shape both as a function of time
and space and a description of the average energy of the pulse as a function of time and
space. The pulse shape is described in time by defining up to.4l magnitude time point
pairs to the program. The spatial description of the pulse is limited to specifying
variations in the pulse magnitude as a function of radial position. This single degree of
freedom is further limited by requiring the user of DYNACYL to choose either no
variation with respect to radius or a Gaussian variation with respect to radius.
However, the code can and has been modified to accept other descriptions.

Up to 10 different energy spectrums can be specified with respect to the time
variation of the average energy. These spectra are defined at different points in time
and the code linearly interpolates between spectra to obtain spectral information at
other points in time. The spectral information is inputed to the code with numbers
which essentially represent a histogram type format. Two histograms are used to
define the spectrum at any one instant of time. One of the histograms gives
information on particle energy levels. The other histogram gives information on
emission angles of the particles.

All of the aforementioned information is used to define a time varying vector
field over the emission face of the cylinder. This field describes the velocity, point of
entry, angle of entry, and charge associated with paticles entering the cylinder. The
number of entry points are defined by the user and are linearly spaced with respect to
the radius. The maximum number of entry points that can be defined at this time,

are 20.




5. LISTING OF CODE INPUT

The following tables list the actual values of various input variables read into
DYNACYL. One should notice that a stronger emphasis has been placed on describing
the pulse and its associated spectra than was done in problems two and three. However,
not as many spatial zones and particle emission points have been defined in problem
four as was done in the previous two problems. These choices should be viewed as a
shift in emphasis while attempting to maintain computational efficiency.

Table 1 lists 28 magnitude-time point pairs, which were used to delineate the
shape of the incident pulse. Table 2 lists ten different energy spectra, each one with
seven energy bins, that were used to describe the energy time history of the pulse.
Table 3 lists the single emission angle spectrum which is used to describe the
distribution with respect to angle of the emitted particles for all time t. The use of
only one emission angle spectrum is a requirement of DYNACYL.

Finally, Table 4 lists several additional variables required by DYNACYL along
with the values which were inputed to the code. The reasons behind selecting the
particular values shown are, in some cases, quite complex. It sufficies to say, at this
point, that operational constraints of DYNACYL along with a desire to maintain
computational efficiency precipated many of the choices.

10
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Table 1. Current Time Points Pairs Used

to Describe Input Pulse Shape

Pulse

Time Amplitude

(nsec) (K amps)
0 0
1.1 .15
2.0 .37
5.3 1.56
5.7 1.65
6.4 1.70
7.1 1.70
7.7 1.65
8.4 1.58
9.2 1.46
9.6 1.43
10.4 1.43
11.1 1.47
12.6 1.76
13.4 1.82
14.4 1.84
15.1 1.84
15.7 1.33
16.4 1.84
17.2 1.84
18.0 1.82
19.1 1.74
20.0 1.63
20.5 1.44
21.5 .58
21.7 .38
22.0 .20
22.8 0

11




Table 2. Beam Energy Time History and Emission Energy Spectra

Time Average Beam Spectra Energy Relative
(nsec) Energy (KeV) Bin Edges (KeV) Intensity

0 190 196.0 0.095
195.0 0.225
194.0 : 0.245
193.0 0.155
192.0 0.115
191.0 0.100
189.0 0.065
186.0

4.2 190 Same as above Same as above

5.2 180 175.0 0.065
174.0 0.200
173.0 0.205
172.0 0.170
171.0 0.140
170.0 0.150
169.0 0.070
165.0

6.2 150 145.0 0.065
144.5 0.158
143.5 0.180
142.5 0.163
141.5 0.140
140.5 0.241
136.5 0.053
131.5

7.4 120 114.0 0.01
113.0 0.115
112.0 0.200
111.0 0.165
110.0 0.125
109.0 0.255
104.0 0.133
95.0

8.2 100 92.0 0.210
90.0 0.290
88.0 0.195
86.0 0.090
84.0 0.065
82.0 0.075
76.0 0.075
63.0

12




Table 2. Beam Energy Time History and Emission Energy Spectra

(Continued)

Time Average Beam Spectra Energy Relative
(nsec) Energy (KeV) Bin Edges (KeV) Intensity
8.6 90 85.0 0.080
80.0 0.540
75.0 0.190
70.0 0.070
65.0 0.040
60.0 0.020
55.0 0.010

50.0
9.6 80 72.0 0.160
68.0 0.380
64.0 0.180
60.0 0.100
56.0 0.050
52.0 0.060
44.0 0.070

36.0
11.2 70 60.0 0.070
57.0 0.250
54.0 0.200
51.0 0.150
48.0 0.095
39.0 0.125

30.0
15.2 50 36.0 0.100
30.0 0.104
28.0 0.114
26.0 0.302
20.0 0.242
14.0 0.092
6.0 0.146

2.0

13
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Table 3. Emission Angular Spectra

Spectra Angle
Bin Edges (degrees) Relative Intensity

0 0.0200
5 0.0450

10 0.1475

20 0.1650

30 0.1975

40 0.1675 |

50 0.1050

60 0.0975

70 0.0550

80

Table 4. Additional DYNACYL Input Variables

Additional Emission Variables

Peak value of current density on axis 3.12 amp/cm2
i Peak value of current density at cylinder wall 2.08 amp/cm2
] No. of radial positions from which particle are emitted 4

Spatial Zoning Variables

No. of radial zones

No. of azimuthal zones

No. of axial zones 1

Time Variables

Maximum time 36 nsec

Time steps 0.8865 nsec




6. DISCUSSION OF RESULTS

The results obtained for IEMP problem 4 are presented in a graphical format
starting with Figure 3 and continuing through Figure 22. The same information is
displayed in a tabular format starting with Table 5 and ending with Table 14. Because
of the extensive nature of the graphs and tables, they have been placed at the end of
the report for easy reference.

No attempt will be made in this section to physically justify the results that are
presented by an appeal to first principles. The intelligent comparison of the
information presented with the experimental data gathered in the Benchmark Experi-
ments will pass judgement on the reasonableness of the results. What will be presented
here is a discussion of the results from a computational standpoint. This information
may be of some use in helping the reader separate analytically induced errors from
errors caused by inadequate physics.

The data points are plotted every 0.887 nsec out to 10.638 nsec and then four
more points are included to extend the results out to 35.461 nsec. This particular
choice of sample points was primarily dictated by economic (computing cost) con-
siderations. It is intended to give the most information during the time frame where
the most rapid variations in the results are expected. As a word of caution, it should be
pointed out that the nonlinear spacing of the results presented does not imply a
nonlinear spacing of the time step used in obtaining those results. The time step was
held constant throughout the calculations at 0.887 nsec.

Another factor which should be commented on is the description of the spatial
variation of the current distribution. As mentioned earlier, DYNACYL allows one to
choose between a constant and a Gaussian variation in current density with respect to
radius. Sample calculations were run using both descriptions.

It was noted that there was a very small difference in the results obtained using
these two descriptions. That is, small in comparison to the magnitude of errors
normally encountered in such calculations. This is not particularly surprising observa-
tion for this problem since the constant current distribution used 2.7 amp/cm2 while the

15




Gaussian had a peak value of 3.12 amp/cm2 and decreased to 2.08 amp/cm2 at the

cylinder wall. The results shown in this report were obtained using the Gaussian
description, for the most part. However, all of the values associated with the last four

time points were obtained using the constant current distribution. The author does not
expect much more than a *5 percent difference between these values and those that
would have been obtained using the Gaussian description.

It should be pointed out that not all of the variable values were calculated by
DYNACYL at the particular point in space required by the problem description (dictated
by location of sensors in the experiment). DYNACYL is constructed in such a way that
some variables are computed at the boundary between spatial zones and some are
calculated at the center of spatial zones. In computing the total space current, for
example, DYNACYL calculates axial components of current density at the center of
zones, while the radial components are computed at the boundaries between zones.
Thus, interpolation between the radial components must be performed to obtain values
at zone centers.

In other cases it was necessary to extrapolate from calculated data points. Such
was the case with H® since the zoning used did not yield values at r = 13.8 cm (the
location of the measured field), but instead yielded values at r = 12.775cm. The
extrapolating was done using a power curve fit on the values calculated at 9.125 cm and
12.775 cm. The curve fitting was done on an HP-67 calculator using their standard
curve fitting program.

In summary, the results presented possibly suffer from insufficient time domain
* sampling and in some cases insufficient spatial sampling. The factor should certainly be
kept in mind in evaluating DYNACYL's capability.




7. RECOMMENDATIONS

The author's experience with DYNACYL has lead him to raise the following
question: how much of DYNACYL's computational error can be assigned to inadequate
treatment of air-ionization and how much of the error can be assigned to inadequate
description of the incident beam? Unquestionably, both factors contribute to the error
but experience has indicated that DYNACYL can be quite sensitive to variations in the
beam energy description. The problem is compounded since part of DYNACYL's input
data was generated by another computer program, ELTRAN,

A more detailed exercise of DYNACYL's characteristics would be a recalculation
of IEMP problem &4 while varying several of the parameters, one at a time, that are used
to describe incident beam energy. Such a study would allow one to speculate on
percentage error in predicted results as a function of percentage error in the input
data. One may find, for example, that the accuracy of DYNACYL's output may be
severely limited by ones ability to describe the input. Secondly, the author suggests
that DYNACYL be modified to allow variations in describing the distribution of the
emitted particles with respect to angle. As it stands, DYNACYL allows for time
variation in energy levels but not time variations in angular distribution. It is thought
that such a modification may allow significant improvements in DYNACYL's capability
to accurately predict results and pave the way to tackle the more difficult problem of
air-ionization effects. It will be difficult to correct inadequate modeling of air
chemistry until one is sure that other significant sources of error have been eliminated.
In conclusion, the Benchmark Experiments could prove to be as useful in helping the
community to improve their codes as it has been in helping the community find the
weaknesses of their codes.

17
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Table 5. Computed Values of H¢(t) at Constant r, Different Values of z.
Field is Assumed Constant with Respect to ¢.

Hg(t)
r=13.8cm P = 2 mtorr
z(cm)

Time 0 2.5 17.5 325 50
0.887 -166.5 -159.4 -71.5 -13.5 0
1.773 -526.7 -372.4 -202.5 -40.7 0
2.660 -805.8 -746.3 -229.0 -56.9 -28.4
3.545 -1257.0 -1101.0 -457.0 -96.3 -117.0
4.433 -1420.0 -1218.0 -526.9 -196.3 -238.0
5.319 -1452.0 -1226.0 -521.0 -290.9 -315.0
6.206 -1315.0 -961.0 -492.0 -306.9 -230.0
7.092 -1022.0 -711.3 -535.0 -374.0 -106.8
7.979 -395.0 -293.0 -251.0 -91.4 -58.2
8.865 -600.0 -495.0 -232.0 -68.2 -84.5
9,752 -769.0 -663.0 -95.8 +18.0 -189.0

10.638 -416.0 -926.7 +57.4 +106.4 -80.8

17.731 -1030.0 -780.0 -194.3 -221.2 +41.3

26.596 +128.0 0 -43.6 -24.6 +55.0

35.461 -58.0 -53.2 -15.6 -2.6 -2.5

18




Table 6. Computed Values of H¢(t) at Constant r, Different Values of r.

Field is Assumed Constant with Respect to ¢.

He(t)
r=13.8cm P = 100 mtorr
Time 0 2.5 17.5 32.5 50
0.887  -1.2422  _1.122°  -48.69 ~10.62 -2.504~2
1.773  -4.09¢2  -3.695%  -1.691%  _33.9 -2.84571
2.660  -8.2652  -7.372%2  _3.276%  -58.26 2.93!
3.566  -1.2022  -1.057°  -4.987%  _1.068%  -1.96°
8433 -1.4200  -1.235°  -5.969%  -2.159%  -2.089%
5319 -1.5° -1.369°  -6.610°  -3.2582  -2.7472
6.206  -1.691°  -1.43 6.3212  -3.584%  _2.693%
7.092  -1.5122 13197 os.2542 _3.832 -2.525%
7.979  -1.6197  -1.34° 5.0112 w0162 -2.2872
8.365  -1.8322  _1.571°  -s.461%  -2.969%  -1.7862
9.752  -1.458>  _1.261°  -5.266%  -3.323%  _2.022°
10.638  -1.597 Ls122 os.5762 -3.2552 -2.0062
17.731 17382 1568 _3.632 51012 23,7512
26.596  -8.5492  .8.105° 57872 _3.82 -3.4052
35.461  -5.642°  -5.568%  _4.452 37542 23,1532
19




Table 7. Computed Values of H¢(t) at Constant r, Different Values of z.
Field is Assumed Constant with Respect to ¢.

Helt) %
r=13.8cm P = 300 mtorr i
z(cm)
Time 0 2.5 17.5 32.5 50 5
0.887  -1.233°  -1.122 4197 -10.77 -2.51172
1773 3912 -3.ses?  -1.383% 308! -0.3061 i
2.660  -7.3642  -6.6912  _2.624%  -50.30 -2.358
3.546 -1.093°  -9.7412  23.7922  -1.292  -75.23
5433 -1.335  _1.2993  _4.73¢2  -1.672%2  -1.1332
5319 -1.7612  -1.5883  6.0012  -2.637%  -1.4362
6.206  -1.886>  -1.743 -8.2832  -3.7762  -1.8542
7.092  -1.998>  _1.84> -9.982 5.3192  -2.9032
7.979  -1.937°  -1.781>  -1.055°  -6.242%  -u4.1332
2.865  -1.89%>  -1.741°  -1.008%  _6.6982  _5.432%
9.752  -1.804°  -1.659>  -9.9752  _6.824%2  -4.5162
10.638  -1.743>  -1.599°  -9.8152  -6.9312  -4.3692
17.731 79w c1.6022 86762 4,992 _3.0472
26.596  -8.681°  -8.168%  -6.165%  -4.0082  -3.2397
35.461 6.4u8%2  -6.308%2  -0.4049%2  _4.000°  -3.442°
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Table 8. Computed Values of H¢(t) at Constant r, Different Values of z.
Field is Assumed Constant with Respect to ¢.

He(t)
r=13.8cm P = 50 mtorr
Time 0 2.5 17.5 32.5 50
0.887  -132.2 -119.73 -48.4 -10.9 0
1.773  -428.% -358.22 -160.59 -34.501 -12.1
2.660  -827.6 -736.7 -296.0 -55.74 -38.9
3.546  -1145 -998.8 -393.0 -100.2 -104.4
4.433  -1417.2 -1056.8 -482.8 -189.1 -186.9
5.319  -1760.8 -1519.2 -552.7 -244.3 -233.09
6.206  -1949.3 -1679.0 -595.9 -266.6 -205.6
7.092  -1954.3 -1700.7 -687.0 -285.3 -139.4
7.979  -1852.9 -1627.1 -746.0 -325.1 -151.2
8.865  -1773.6 -1554.5 -765.0 -438.7 -206.0
9.752  -1608.1 -1419.1 -719.8 -409.9 -274.2
10.638  -1558.0 -1377.3 -709.9 -439.8 -225.9
17.731  -1123.4 -934.7 -349.0 -174.3 -65.7
26.596  -524.1 -491.5 -210.4 -49.0 -12.71
35.461  -440.7 -394.0 -156.9 -38.12 -10.686
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Table 9. Total Space Current at Different Values of z
Total Current lt(t)

P = 2 mtorr

Time z(cm)

(nsec) 0 5 30 35 55
0.887 -147.73 -108.71 0 0 0
1.773  -388.83 -290.73 -17.12 -0.971 0
2.660  -745.12 -550.9 -65.95 -28.9 0
3.546  -1041.15 -759.7 -274.9 -87.8 -10.5
4.433 -1221.1 -855.1 -214.0 -185.4 -43.5
5.319 -1304.7 -842.5 -286.3 -272.29 -160.14
6.206  -1408 -748.9 -281.5 -251.9 -166.8
7.092 -840 -492.9 -304.4 -242.75 -162.76
7.979  -587.3 -344.95 -251.4 -186.39 -120.98
8.865  -775.1 -272.5 -96.68 -92.2 -77.7
9.752  -551.0 -463.42 -47.57 -36.4 -71.3

10.638 -458.6 -222.0 -42.33 -45.0 -35.8

17.731 -861.3 -362.8 -75.85 -72.78 -36.9

25.596 +64.56 -38.95 -21.93 -15.23 -18.14

; 35.461 -50.9 -48.8 -1.39%4 0 0
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Table 10. Total Space Current at Different Values of z
Total Current It(t)
P = 100 mtorr
Time 2(cm)
(nsec) 0 5 30 35 55
0.887 -149.0 -108.0 0 0 0
1.773 -368.35 -281.6 -28.44 -1.7 0
2.660 -710.17 -530.3 -59.02 -23.7 0
3.546 -1002.6 -746.8 -162.9 -93.58 -13.53
4.433 ~1207.3 -879.6 -258.9 -203.92 -48.49
5.319 -1307.8 -1042.3 -329.11 -285.5 -130.63
6.206 -1406.5 -1081.7 -333.4 -313.64 -266.68
7.092 -1312.7 -1003.7 -416.8 -345.79 -306.8
7.979 -725.02 -1100.4 -363.01 -275.72 -258.16
8.865 -1435.4 -1381.27 -376.6 -227.6 -191.3
9.752 -1182.7 -1095.7 -360.17 -293.381 -173.9
10.638 -1516.2 -1392.9 -389.9 -225.9 ~150.1
17.731 -1421.4 -1205.6 -500.5 -445.6 -339.5
26.596 -812.56 -730.6 -450.8 -398.6 -322.01
35.461 -555.9 -38.0 -365.0 -330.0 -255.7
|
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Table 11. Total Space Current at Different Values of z

Total Current I t(t)

P = 300 mtorr

Time z(cm)

(nsec) 0 5 30 35 55
0.887 -147.8 -108.9 0 0] 0
1.773 -205.05 -281.7 -17.1 -1.0 0
2.660 -623.9 -530.21 -74.35 -35.4 0
3.546 -898.8 -758.8 -160.34 -100.39 -13.96
4.433 -1171.2 -1077.6 -268.13 -179.6 -50.98
5.319 ~-1494.1 -1356.7 -343.6 -260.7 -113.56
6.206 -1451.2 -1512.0 -457.1 -342.1 -176.2
7.092 -1714.6 -1470.1 -574.3 -460.6 -219.8
7.979 -1731.8 -2444 .8 -676.4 -598.5 -368.5
8.86 -1567.5 -1981.3 -675.3 -577.3 -372.1
9.752 -1501.9 -1360.3 -554.9 -627.9 -420.3

10.638 -1355.1 -1177.1 -631.0 -519.3 -295.2

17.731 -1444 .7 -1254.5 -580.3 -452.6 -280.5

26.596 -824.3 -765.9 -454.8 -387.9 -293.0

35.641 -597.1 -582.4 -331.5 -333.1 -308.7




Table 12. Total Space Current at Different Values of z

Total Current lt(t)

P = 50 mtorr

Time z(cm)

(nsec) 0 5 30 35 55
0.887 -139.78 -108.636 0 0 0
1.773 -359.4 -285.65 -16.64 0 0
2.660 -641.27 -521.85 -65.39 -28.073 0.10
3.546 -809.47 -695.4 -149.36 -87.25 -10.648
4.443 -1082.1 -867.4 -226.26 -170.5 -42.517
5.319 -1373.7 -1116.7 -278.0 -235.2 -170.6
6.206 -1080.3 -1242.8 -325.9 -257 .45 -156.2
7.092 -1483.9 -1034.07 -378.0 -303.24 -127.1
7.979 -1423.0 -1238.9 -425.2 -328.31 -166.3
8.865 -1353.6 -1188.8 -470.7 -351.9 -188.32
9.752 -1244 .8 -1108.3 -401.9 -349.7 -249.8

10.638 -1173.14 -1075.9 -256.4 -346.16 -322.59

17.731 -926.6 -724.0 -288.8 -138.9 -92.51

26.596 -485.1 LLL ) -70.8 -38.32 -10.4

35.461 -416.75 -355.6 -37.10 -27.12 -9.8
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Figure 3. Radial current I (t) on the end plate at z = 55 cm for different values

of r at a pressure of 2 mtorr.
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Figure 4. Radial current I (t) on the end plate at z = 55 cm for different values
of r at a pressure of 100 mtorr.
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Figure 5. Radial current I (t) on the end plate at z = 55 cm for different values
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of r at a pressure of 300 mtorr.
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Figure 6. Radial cutrent lr(t) on the end plate at z = 55 cm for different values
of r at a pressure of 50 torr.
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Figure 7. Total space current 1,(t) at five different values
of z at a pressure of 2 mtorr.
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Figure 8. Total space current lt(t) at five different values
of z at a pressure of 100 mtorr.

33

36

40




-2200]

- 1800}

- 1400}

P = 300 wmTorr
2=0cm
= 5cm
= 30 cm
= 35 cm
= 55 cm

04 DO e
NN NN

1 1 | | 1 | ] | I | l ] ] |

w
[-%
E
2 -1000
._'D—
~600|
- 200
0
400
RT-17318

8 12 16 20 24 28 32
TIME (nsec)

Figure 9. Total space current lt(t) at five different values
of z at a pressure of 300 mtorr.
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Figure 10. Total space current lt(t) at five different values
of z at a pressure of 50 torr.
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Figure 11. H¢(t) evaluated at r = 13.8 cm for five different valuesof z at a
pressure of 2 mtorr. Variable is assumed constant with respect
10 ¢.
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Figure 12. Hg(t) evaluated at r = 13.8 cm for five different values of z at a
pressure of 100 mtorr. Variable is assumed constant with respect
t0 ¢.
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Figure 13. H¢(t) evaluated at r = 13.8 cm for five different values of z at a
pressure of 300 mtorr. Variable is assumed constant with respect

to ¢.
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Figure 14. H¢(t) evaluated at r = 13.8 cm for five different values of z at a
pressure of 50 torr. Variable is assumed constant with respect
to 9.
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Figure 15. Er(t) at z = 2.5, 50 cm; r = 14.6 cm and a pressure of 2 mtorr.
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Figure 16. Er(t) at z = 2.5, 50 cm; r = 14.6 cm and a pressure of 100 mtorr.
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Figure 17. Er(t) at z = 3.5, 50 cm; r = 14.6 cm and a pressure of 300 mtorr.
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Figure 18. Er(t) at z = 2.5, 50 cm; r = 14.6 cm and a pressure of 50 torr.

43




2200 T — T T T T T T T T T 1T 7T TT
1800 |— 2 mTorr -
r=20
— O z2=0cm -{
02=325cm
1400 A z2=50.0cm —

= 1000 —~
z
uJN ]
600 —
E
200 —
-200 }— —
400 L
0 4 8 12 16 20 24 28 32 36
E
RT-17319 TIME (nsec) 1

Figure 19. Ez(t)atz=0,32.5,and55cm;r=0cmandapresureof2mtorr.
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Figure 22. Ez(t) at z = 0, 32.5, and 55 cm; r = 0 and a pressure of 50 torr.
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